domingo, 19 de octubre de 2014

2.5 Funciones trascendentes.

Las  funciones que no son algebraicas se llaman funciones trascendentes.

Funciones trigonometricas:

Una función trigonométrica, también llamada circular, es aquella que se define por la aplicación de una razón trigonométrica a los distintos valores de la variable independiente, que ha de estar expresada en radianes. Existen seis clases de funciones trigonométricas: seno y su inversa, la cosecante; coseno y su inversa, la secante; y tangente y su inversa, la cotangente. Para cada una de ellas pueden también definirse funciones circulares inversas: arco seno, arco coseno, etcétera.


La función seno
Se denomina función seno, y se denota por f (x) 5 sen x, a la aplicación de la razón trigonométrica seno a una variable independiente x expresada en radianes. La función seno es periódica, acotada y continua, y su dominio de definición es el conjunto de todos los números reales.

La función coseno
La función coseno, que se denota por f (x) = cos x, es la que resulta de aplicar la razón trigonométrica coseno a una variable independiente x expresada en radianes. Esta función es periódica, acotada y continua, y existe para todo el conjunto de los números reales.


La función tangente
Se define función tangente de una variable numérica real a la que resulta de aplicar la razón trigonométrica tangente a los distintos valores de dicha variable. Esta función se expresa genéricamente como f (x) = tg x, siendo x la variable independiente expresada en radianes.



Funciones exponenciales.


Una función exponencial con base b es una función de la forma f(x) = bx , donde b  y  x son números reales tal que b > 0  y  b es diferente de uno.
Propiedades de f(x) = bx, b>0, b diferente de uno:

1)  Todas las gráficas intersecan en el punto (0,1).
2)  Todas las gráficas son continuas, sin huecos o saltos.
3)  El eje de x es la asíntota horizontal.
4)  Si  b > 1 (b, base), entonces bx aumenta conforme aumenta x.
5)  Si  0 < b < 1, entonces bx disminuye conforme aumenta x.
6)  La función f es una función uno a uno.



No hay comentarios.:

Publicar un comentario